全方位领先,中国量子计算打破全球多项纪录,逼近“量子霸权”

中科院院士、中国科学技术大学教授潘建伟等人与德国、荷兰的科学家合作,在国际上首次实现了20光子输入60×60模式干涉线路的玻色取样量子计算,在四大关键指标上均大幅刷新国际纪录,逼近实现量子计算研究的重要目标“量子霸权”。

与国际学界之前的研究成果相比,他们此次实验成功操纵的单光子数增加了5倍,模式数增加了5倍,取样速率提高了6万倍,输出态空间维数提高了百亿倍。实验首次将玻色取样推进到一个全新的区域。

国际权威学术期刊《物理评论快报》日前以“编辑推荐”的形式发表了该成果。《物理评论快报》审稿人认为,这项研究突破是“一个巨大的飞跃”,“是通往实现‘量子霸权’的‘弹簧跳板’”。

量子计算机是什么?

量子计算是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。当某个装置处理和计算的是量子信息,运行的是量子算法时,它就是量子计算机。

众多科学家认为:量子计算是下一次工业革命的引擎,将引爆第四次工业革命!

量子计算机为什么会被世界各国寄予厚望,因为量子计算机基于量子叠加态的原理可以拥有秒杀所有传统计算机的计算能力。

量子力学的一个中心原则就是粒子可以存在于叠加态中,能同时拥有两个相反的特性,也就是我们说的波粒二象性。尽管我们在日常生活中常常面对“不是A就是B”的抉择,而但在微观世界中是可以接受“既是 A 又是 B”的。

而正是基于这样的特性,让量子计算机拥有了超强的计算能力。

传统计算机每比特非0即1,而在量子计算机中,量子比特可以以处于即是0又是1的量子叠加态,这使得量子计算机具备传统计算机无法想象的超级算力。

举个例子,如果x=0,运行A;如果x=1,运行B。

传统计算机永远只会一次执行一种逻辑分支,要么A,要么B,要么两种情况各运行一次。

但在量子计算机中,变量X是量子叠加态,既为1,又为0,因此它可以在一次计算中同时执行A和B。这也被称为量子比特或者叫量子位。成为了量子信息的计量单位。

做个总结,传统计算机使用0和1,量子计算机也是使用0跟1,但与之不同的是,其0与1可同时计算。古典系统中,一个比特在同一时间,不是0,就是1,但量子比特是0和1的量子叠加。这是量子计算机计算的特性。

所以如果我们将量子比特的数量增加到10个,那么传统计算机需要计算2^10=1024次。量子计算机需要计算多少次呢?

还是1次。

我们再把量子比特数加到100个、1000个、10000个乃至更多,看出差距了吗?现有计算机要运行上万年的工作量,量子计算机只用几分钟就能搞定。

这也预示着当经典计算机还在通过增加中央处理器的密度和速度来实现计算能力的代数级增长时,量子计算机却完成了指数级的革命。

玻色取样量子计算有什么意义

什么是玻色取样量子计算呢?

其中,量子计算研究的第一个阶段性目标是实现“量子计算优越性”(亦译为“量子霸权”),即研制出量子计算原型机在特定任务的求解方面超越经典的超级计算机。利用超导量子比特实现随机线路取样和利用光子实现玻色取样是目前国际学术界公认的演示量子计算优越性的两大途径。

其中这两样中国都是全世界领先,那什么是玻色取样呢?

在量子计算的版图上,光子、电子、离子等微观粒子都被科学家用来尝试实现可能的计算方案。

而线性光学量子计算是量子计算的方案之一。所谓线性光学量子计算,就是以光子作为载体,经过一个线性系统完成操作,输出计算结果。实现大规模比特的通用量子计算机目前看来还具有很苛刻的门槛,于是,科学家希望能够首先让量子计算在特定任务上表现出比经典计算机更卓越的能力,许多科学家将目光瞄准了玻色取样上。

“玻色取样”是指,在n个全同玻色子经过一个干涉仪后,对n个玻色子的整个输出态空间进行采样的问题。采样过程和分布概率息息相关。

科学家经过研究发现,n光子“玻色取样”的分布概率正比于n维矩阵积和式(Permanent)的模方,从计算复杂度的角度来看,积和式的求解难度是“#P-hard”,当前经典最优算法需要O(n2n)步,随着光子数的增加求解步数呈指数上涨。对于这样一个经典计算#P-complete困难的问题,在中小规模下就可以打败超级计算机。

所以玻色取样就成为了实现量子计算的两大途径之一,对于玻色取样任务来说,验证其是否从正确的分布中采样是至关重要的。目前而言,完全验证还难以做到,因为对于具有量子优势的实验来说,经典模拟的计算量将是指数级增长的,无法对大规模的实验进行验证。

玻色取样问题

2017年,潘建伟、陆朝阳研究组运用微腔精确耦合的单量子点器件,产生了国际最高效率的全同单光子源,初步应用于构建超越早期经典计算能力的针对玻色取样问题的光量子计算原型机,其取样速率比国际上当时的实验提高24000多倍。

2019年,潘建伟、陆朝阳研究组提出相干双色激发[Nature Physics15,941(2019)]和椭圆微腔耦合[Nature Photonics13,770(2019)]理论方案,在实验上同时解决了单光子源所存在的混合偏振和激光背景散射这两个最后的难题,并在窄带和宽带微腔上成功研制出了确定性偏振、高纯度、高全同性和高效率的单光子源。

之前,国际上对完美单光子器件的探寻持续了二十年,然而这三项指标从未同时实现过,这项开创性的研究是实现完美单光子源的里程碑式成就

中国科大研究组从而利用自主发展的国际最高效率和最高品质单光子源、最大规模和最高透过率的多通道光学干涉仪,并通过与中科院上海微系统与信息技术研究所尤立星在超导纳米线高效率单光子探测器方面的合作,成功实现了20光子输入60×60模式(60个输入口,60层的线路深度,包括396个分束器和108个反射镜)干涉线路的玻色取样实验。

实验成功操纵的单光子数增加了5倍,模式数增加了5倍,取样速率提高了6万倍,输出态空间维数提高了百亿倍。其中,由于多光子高模式特性,输出态空间达到了三百七十万亿维数,这等效于48个量子比特展开的希尔伯特空间。因此,实验首次将玻色取样推进到一个全新的区域:无法通过经典计算机直接全面验证该玻色色取样量子计算原型机,朝着演示量子计算优越性的科学目标迈出了关键的一步。

美国物理学会Physics网站对该工作的总结指出:“这意味着量子计算领域的一个里程碑:接近经典计算机不能模拟量子系统的地步”

而除了玻色取样之外,利用超导量子比特实现随机线路取样中国也是世界第一。

2019年4月,中国科大潘建伟团队实现了国际上最大规模超导量子比特纠缠态12比特“簇态”的制备。

而要实现多个量子比特的纠缠,需要实验的每个环节(量子态的品质、操控和测量)都保持极高的技术水平,并且随着量子比特数目的增加,噪声和串扰等因素带来的错误也随之增加,这对多量子体系的设计、加工和调控带来了巨大的挑战。

潘建伟教授及其同事朱晓波、陆朝阳、彭承志等通过设计和加工了高品质的12比特一维链超导比特芯片,并且采用并行逻辑门操作方式避免比特间的串扰,以及热循环操作去除不需要的二能级系统对于比特性能的影响,首次制备并验证了12个超导比特的真纠缠,保真度达到70%,打破了2017年由中国科大、浙江大学、物理所联合研究组创造的10个超导量子比特纠缠的记录。这也是目前固态量子系统中规模最大的多体纠缠态,可为下一步实现大规模随机线路采样和可扩展单向量子计算奠定基础。

这标志着中国在量子计算上实现了全面领先,这也标志着中国将有可能实现量子霸权,到时候中国将稳居第四次工业革命的第一梯队。

人类在过去发生了三次工业革命,第一次是蒸汽时代,第二次是电气时代,第三次是信息时代。除了第三次中国参与了进去之外,前两次中国都错过了。

而第四次工业革命中国将不再是参与者的身份,将有可能是领导者或者主导者的身份。