可信大模型新挑战:噪声思维链提示下的鲁棒推理,准确率直降40%
当前,大语言模型(Large Language Model, LLM)借助上下文学习(In-context Learning)和思维链提示(Chain of Thoughts Prompting),在许多复杂推理任务上展现出了强大的能力。
然而,现有研究表明,LLM 在应对噪声输入时存在明显不足:当输入的问题包含无关内容,或者遭到轻微修改时,模型极容易受到干扰,进而偏离正确的推理方向。如图 1 左所示,Q1 中的「We know 6+6=12 and 3+7=10 in base 10」 是关于 base-9 计算的噪声信息,该信息容易误导模型输出错误的结果。
图 1. 噪声问题(Noisy Questions)和噪声思维链(Noisy Rationales)的示例
已有的鲁棒研究大多侧重于噪声问题(Noisy Questions),然而,LLM 在噪声思维链(Noisy Rationales)下的推理还没有得到充分的探究。在本工作中,我们将噪声思维链定义为:包含不相关或者不准确推理步骤的思维链,如图 1 右侧 R1 中的「13 + 8 = 21」步骤,对于 base-9 计算来说,是错误的推理步骤。
这些噪声思维链通常源自 LLM 的实际应用,比如众包平台、对话系统、机器生成数据等场景,人类和机器在推理中都会不可避免地犯错,从而产生噪声思维链。因此,噪声思维链的实际影响和技术挑战不容小觑。当前,我们仍然不清楚 LLM 在面对噪声思维链提示时的鲁棒性能如何,也缺少有效的应对策略。因此,非常有必要构建一个新的数据集,用于系统评估当前 LLM 在噪声思维链场景下的鲁棒性,以及验证相应的鲁棒推理策略。
对此,我们构建了NoRa 数据集,并进行了大量的实验评测。结果表明,GPT-3.5-Turbo、Gemini-Pro、Llama2-70B 和 Mixtral-8x7B 等开源或闭源 LLM 都极容易受到噪声思维链的影响。其中,GPT-3.5-Turbo 的准确率至多可降低40.4%。因此,我们也呼吁大家更多地关注大模型推理的鲁棒性问题。
我们的主要贡献有如下三点:
接下来将从新问题、新数据集、新方法这三个角度,简要地介绍我们关于大模型推理鲁棒性的研究结果,相关论文已发表于 NeurIPS 2024 会议。
新问题:Noisy Rationales
思维链可以有效提升大模型的推理能力 [1]。具体来说,通过给出带有中间推理步骤的示例,LLM 可以很快地适应到新任务上,而无需进行参数修改(见图 2 右上角)。现有工作中,通常假设思维链包含清楚且正确的推理步骤,但实际情况可能并非如此。
图 2. 各种 setting 下的模型输入
目前,已经有许多工作探索了 Noisy Questions 对 LLM 推理性能的影响(见图 2 左下角),揭示了 LLM 对输入中微小修改的敏感性 [2,3]。
然而,在人工标注或机器生成的思维链中,可能会包含一些与问题不相关或不准确的推理步骤(见图 2 右下角),这些噪声思维链可能会对推理性能产生负面影响,但目前 LLM 对噪声思维链(Noisy Rationales)的鲁棒性依旧未知。
因此,本文提出了新的研究问题 Noisy Rationales:当示例的推理步骤中包含无关的或者不准确的内容时,LLM 的推理鲁棒性如何?对这一问题的探索,有助于深入理解和提升 LLM 在非完备场景中的推理能力。
新数据集:NoRa
为了评估 LLM 在噪声思维链下的鲁棒性,我们构建了 NoRa(Noisy Rationales)数据集,NoRa 涵盖了 3 种推理任务类型:数学推理、符号推理和常识推理,共包含26391个问题以及5种子任务。
一条思维链(Rationale)包含多个连续的推理步骤(Thoughts);噪声思维链(Noisy Rationale)包含的噪声推理步骤(Noisy Thoughts)被定义为如下两类(示例见图 3):
图 3. NoRa 数据集的样本
在构建数据集时,我们通过插入 Noisy Thoughts 来生成噪声思维链,这些噪声仅影响推理链的细节,而不改变问题和最终答案的正确性。此外,我们使用不同的噪声比例(Noise Ratio,即 Noisy Thoughts 占所 Thoughts 的比例,如 0.3、0.5、0.8)来控制任务的困难程度,Noise Ratio 越大任务难度也越大。NoRa 数据集的统计信息如图 4 所示。
图 4. NoRa 数据集的统计信息
NoRa 数据集 测评结果
我们以 GPT-3.5-Turbo 为 base model,测试了其在 NoRa 上的表现,并且对比了多种去噪方法。这些去噪方法可以分为两类:
图 5. 各种去噪方法 在 NoRa 数据集上的测评结果
实验结果(图 5)表明:
此外,我们还进行了各种消融研究,来探索不同因素对 NoRa 数据集评估结果的影响(见图 6),我们发现:
图 6. 消融实验:(左) 温度系数对性能的影响;(中) 示例个数对性能的影响;(右) 各种模型的性能
新方法:CD-CoT
根据测评结果,大语言模型在应对噪声思维链提示时,其自身的去噪能力非常有限;即便使用自我纠正或自一致性方法,效果仍不理想。
因此,我们认为有必要引入外部监督信号来增强模型鲁棒性,且这种监督信号既要足以实现去噪,又要在实际应用中切实可行。对此,我们提出了一种简单有效的去噪推理方法,CD-CoT(Contrastive Denoising with Noisy Chain of Thoughts)。
CD-CoT 借鉴了对比学习的思路,通过让 LLM 显式地对比有噪和干净的思维链,从而识别出噪声信息。方法主要包括四个关键步骤,步骤 1&2 进行显式的去噪,步骤 3&4 进行精细推理并获得最终答案。
四个步骤具体如下:
完整的 CD-CoT 算法请见图 9。
图 7. CD-CoT 算法的步骤 1&2
图 8. CD-CoT 算法的步骤 3&4
图 9. 完整的 CD-CoT 算法
CD-CoT 实验结果
我们在 NoRa 数据集上全面测试了 CD-CoT,并对比了多个需要额外监督信息的去噪方法(见图 10),我们发现:
图 10. 各种需要额外监督信息的方法 在 NoRa 数据集上的测评结果
此外,通过诸多消融实验,我们发现:
图 11. 关于 CD-CoT 超参数的消融研究
图 12. 关于 CD-CoT 在不同 LLM 上的效果的消融研究
更多的实验分析和技术细节,请移步参阅我们的论文及源码,我们也将持续更新本工作的内容。
我们希望通过这项工作,呼吁人们更多地关注 LLM 推理的鲁棒性问题,并开展关于大模型推理鲁棒性的探讨与研究。非常感谢大家关注我们的工作!
参考文献
[1] Wei J, Wang X, Schuurmans D, et al. Chain-of-thought prompting elicits reasoning in large language models. NeurIPS 2022.
[2] Shi F, Chen X, Misra K, et al. Large language models can be easily distracted by irrelevant context. ICML 2023.
[3] Tian Q, Zhu H, Wang L, et al. R3 Prompting: Review, Rephrase and Resolve for Chain-of-Thought Reasoning in Large Language Models under Noisy Context. EMNLP 2023.
[4] Huang J, Chen X, Mishra S, et al. Large language models cannot self-correct reasoning yet. ICLR 2024.
[5] Xi Z, Jin S, Zhou Y, et al. Self-polish: Enhance reasoning in large language models via problem refinement. EMNLP 2023.
[6] Robey A, Wong E, Hassani H, et al. Smoothllm: Defending large language models against jailbreaking attacks. Arxiv 2023.
[7] Zhang Z, Zhang G, Hou B, et al. Certified robustness for large language models with self-denoising. Arxiv 2023.
[8] Wang X, Wei J, Schuurmans D, et al. Self-Consistency Improves Chain of Thought Reasoning in Language Models. ICLR 2023.
课题组介绍
香港浸会大学可信机器学习和推理课题组 (TMLR Group) 由多名青年教授、博士后研究员、博士生、访问博士生和研究助理共同组成,课题组隶属于理学院计算机系。课题组专攻可信表征学习、可信基础模型、基于因果推理的可信学习等相关的算法,理论和系统设计以及在自然科学上的应用,具体研究方向和相关成果详见本组 GitHub (https://github.com/tmlr-group)。
课题组由政府科研基金以及工业界科研基金资助,如香港研究资助局杰出青年学者计划,国家自然科学基金面上项目和青年项目,以及微软、英伟达、字节跳动、百度、阿里、腾讯等企业的科研基金。青年教授和资深研究员手把手带,GPU 计算资源充足,长期招收多名博士后研究员、博士生、研究助理和研究实习生。此外,本组也欢迎自费的访问博士后研究员、博士生和研究助理申请,访问至少 3-6 个月,支持远程访问。有兴趣的同学请发送个人简历和初步研究计划到邮箱 (bhanml@comp.hkbu.edu.hk)。