费曼:这个实验“体现了量子力学的全部奥秘”

双缝实验是物理学中的一个经典实验,每个学习过物理学的人都知道甚至亲手操作过这个实验。英国物理学家托马斯·杨最早在1803年演示的这个实验,被认为是人类认识光的本质的一个里程碑,它既回应了牛顿和惠更斯关于光究竟是粒子还是波的争论,也为一个世纪之后开始的量子力学革命埋下了伏笔。

然而,我们可能还是在很大程度上低估了这个耳熟能详的实验的意义,或者说我们也许并没有真正理解大自然通过双缝实验所泄露的“天机”。理查德·费曼则凭借惊人的物理直觉和深刻洞见,指出双缝实验“体现了量子力学的全部奥秘”。

在印度科学作家阿尼尔·阿南塔斯瓦米的《双缝实验和量子力学》一书中,我们从费曼对双缝实验的讲解开始,跟随作者的文字,漫游超过两个世纪的历史,看看牛顿、爱因斯坦、玻尔、海森伯、薛定谔等物理学巨擘如何理解光、粒子、波和现实的意义,以及双缝实验如何展示着世界那迷人却又令人困惑的本质。

这一天距离理查德·费曼获得诺贝尔物理学奖还有一年的时间。费曼出版过一本好玩的自传,他在书里形容自己是个心直口快的科学家,对一切都很感兴趣,无论是破解保险箱还是打鼓。这本自传让许多非物理学背景的人认识了费曼其人,但那已经是20多年后的事了。而在1964年11月,对纽约州伊萨卡市康奈尔大学的学生们来说,眼前的费曼早已是个响当当的明星,他们对他的到来表示了热烈的欢迎。费曼此行的目的是举办一系列讲座。康奈尔编钟奏响了校歌《远在卡尤加湖之上》,教务长在介绍费曼时称他是一位卓越的导师和物理学家,当然,他也没忘记提费曼是个出色的邦戈鼓手。在一种欢迎表演艺术家的掌声中,费曼大步走上台,以下面这个回应作为演讲的开场:“真奇怪,我偶尔也会在正式场合被叫到台上表演邦戈鼓,可是主持人似乎从来不觉得有必要提一下其实我还搞理论物理研究。”

▲ 理查德·费曼

等到了第6场演讲,面对还在鼓掌的学生,费曼没有说任何开场白便直接切入了正题,甚至连一句客套的“大家好”都没有。他想要探讨的是,虽然直觉可以帮助我们应付看得到、听得到和摸得到的日常事物,但它却难以理解大自然在微观尺度上的表现。

他说,经常是实验挑战了我们对这个世界的直观认识。“于是,我们便看见了意想不到的东西,”费曼说,“这些东西与我们的想象差距巨大。所以我们的想象力被发挥到极致——这与写小说不同,不是幻想现实中不存在的事物,而是通过极致的想象,来认识和理解实际存在的东西。我想谈论的正是类似的情况。”

这个讲座是关于量子力学的,也就是研究微观事物的物理学分支。量子力学尤其关注光和亚原子物质(如电子)的性质。换句话说,它要研究的正是现实的本质。光和电子会(像水一样)表现出波动性吗?还是说它们更像粒子(比如沙粒)?就目前看来,回答“是”或者“否”都是既正确又不正确的。任何试图将微观的亚原子实体具象化的努力,都只是我们的直觉在自取其辱。

“它们的行为遵循自己独特的方式,”费曼说,“用术语来讲,我们可以将其称为‘量子力学’的方式。它们的行为与你见过的任何事物都不同。无论你有多少见识都是不够的——你的见识不完备。在极其微小的尺度上,事物的表现具有根本性的不同。它们的行为不只是像粒子,也不只是像波。”

不过好在,至少光和电子的行为是“完全相同的”,费曼说,“那就是,二者都很古怪”。

费曼提醒现场的听众,接下来的讲座内容会有些难懂,因为它将挑战听众在大自然如何运作这个问题上的长久共识:“但其实,这种难是心理上的,是你施加给自己的永恒折磨,因为你总对自己说:‘可它怎么能是那样的呢?’这种想法源于你控制不住自己想要用熟悉的事物来类比的冲动,但我认为这终究是徒劳的。我不会用任何熟悉的事物做类比,只是单纯地进行描述。”

于是,为了能在接下来的一个小时里通过引人入胜的演讲表明自己的观点,费曼把重点放在了“一个旨在反映量子力学全部奥秘的实验”上,它“将让你直面大自然的自相矛盾、神秘莫测和稀奇古怪”。

这个实验就是双缝实验。很难想象有哪个实验能比它更简单,而在读这本书的过程中,你会发现它虽然简单,却令人感到无比困惑。我们首先需要一个光源,然后在光源前放置一块不透光的板子,板子上开出两道狭窄且间距很小的缝隙或口子,这为光线的传播提供了两条不同的路径。在板子的另一边立一块屏幕,你觉得你能在这块屏幕上看到什么?

这个问题的答案——根据我们所熟悉的现实生活中的经验——取决于回答者如何看待光的本质。在17世纪末和整个18世纪,艾萨克·牛顿的观点主导了我们对于光的看法。他认为光由微小的粒子构成,并把这种微粒称为“光微粒”。牛顿之所以提出光的“微粒说”,部分是为了解释为何光不能像声音一样拐弯。牛顿认为,光肯定是由粒子构成的,因为只有这样,才能解释光线在没有外力作用的情况下不会弯曲的现象。

费曼在讲座中讲解双缝实验时,首先考虑了用粒子轰击双缝的情况。为了强调实验对象的粒子性,他让在场的人忘掉亚原子粒子(比如电子和光微粒),转而想象我们在开枪发射子弹——子弹总是“一颗一颗”的。为避免太多暴力的联想,我们不如想象有这样一种机器,它喷射的是沙粒,而不是子弹。我们都知道,虽然沙粒比子弹小得多,但它也是一颗一颗的。

第一步,我们只用左侧或者右侧的狭缝来做实验。假设沙粒的速度足够快,我们可以把它们的运动轨迹看成直线。经过这样的处理,绝大多数沙粒都会在穿过狭缝后,落到狭缝正后方一个与狭缝相对应的区域内。正中间的数量最多,越往两侧越少。在下图的曲线图中,曲线越高,代表落在该处的沙粒数量越多。

如果我们用两条狭缝来做实验,又会看到什么样的结果呢?正如很多人所预料的,每粒沙子都会从两条狭缝中的一条穿过,然后击中位于屏障另一侧的光屏。有多少沙粒穿过两条狭缝,就有多少沙粒击中后方的光屏。这种简单易懂的运动方式非常符合非量子世界,也就是牛顿运动定律所描绘的经典世界的日常经验。

为了向你证明实验结果的确如此,我们可以把整个实验装置竖起来,让沙子从上而下落在带有两条狭缝的屏障上。很容易想见,穿过狭缝的沙子应该会在开口的正下方形成两个小沙堆。

把实验装置恢复原位,想象这次入射的不是沙子,而是光线,并且假设光是由牛顿所说的光微粒构成的。根据沙粒实验的结果推断,我们应当能在光屏上看到两条光带,它们分别位于左右两条狭缝的正后方,每条光带都是中间最亮,越往两侧越暗,除此之外,我们只要把击中光屏的光微粒悉数相加,就能算出总共有多少光微粒穿过两条狭缝。

可惜,实验的结果却并非如此。从穿越双缝的表现来看,光并不像是由粒子构成的。

哪怕在比牛顿更早的年代,人们就已经观察到了一些不符合牛顿的光微粒说的现象。举个例子,当光从一种介质进入另一种介质时——比如,光从空气进入玻璃,然后再从玻璃进入空气——它的传播路线会发生变化(这种现象被称为折射,正是我们制作玻璃透镜的原理)。如果认为光是由粒子构成的,那就很难解释它在穿越不同的介质时为什么会出现折射的现象,因为无论是从空气进入玻璃,还是从玻璃进入空气,想要改变粒子行进的方向就必须对它们施加外力的作用。但是,如果把光看成是一种波,折射现象就可以解释了(波在空气和玻璃里传播的速度不同,这解释了它在跨越不同介质时传播方向发生变化的现象)。这也正是荷兰科学家克里斯蒂安·惠更斯在17世纪提出的观点。惠更斯主张光是一种波,就像声波一样。鉴于声音的传播必须依靠介质的振动,惠更斯假想存在一种名为“以太”的介质,弥漫在我们周围的空间里,而它的振动便是光的本质。

▲ 克里斯蒂安·惠更斯

这是一个严肃的理论,由一位天赋异禀的科学家提出。惠更斯是一名物理学家、天文学家兼数学家。他曾亲手打磨透镜,并用自制的天文望远镜发现了土星的卫星——土卫六(2005年,人类的探测器首次登陆土卫六,探测器名叫惠更斯号,以纪念他的贡献)。他还独立发现了猎户星云。1690年,惠更斯出版了《光论》一书,他在这部著作里详细论述了光的波动理论。

牛顿和惠更斯生活在同一时代,但牛顿的名声更为显赫。毕竟,是他提出了运动三大定律以及万有引力定律,解释了从日常生活中的抛物线到行星绕太阳运行的轨迹的一切现象。不仅如此,牛顿还是个相当博学的通才,在各个领域都颇有建树(作为数学家,他创立了微积分,他甚至曾大胆涉足化学、神学,撰写过《圣经》评注,至于在物理学上的成就,我就不必多费口舌了)。这么看来,牛顿的光微粒理论能压惠更斯的波动理论一头也是情有可原的。在“光是什么”这个问题上,世人还需要一位能与牛顿分庭抗礼的全才来打开局面。

(本文摘自《双缝实验和量子力学》第1章“回顾双孔实验”,标题为编者所加。)

本文转载自《墨子沙龙》微信公众号

《物理》50年精选文章